Study of tropospheric ozone concentration trend of Kermanshah by meteorological parameter and ozone precursor and OMI images

نویسندگان

چکیده مقاله:

Abstract: Clean air is a necessity for human well-being and health. Air pollution is a major threat to humans and other organisms and is considered as one of the environmental challenges. Today, with the increase in air pollution, the need to know more about the causes of its occurrence has been raised. The various consequences of air pollution have made air quality monitoring and control inevitable in all societies at the forefront of environmental issues. In recent years, air pollutants have caused serious risks to human health and the environment. One of these pollutants Tropospheric ozone is the cause of health and environmental problems, especially respiratory problems and lung dysfunction and asthma attacks. Other effects of tropospheric ozone can be reduced lung capacity, cough, chest pain, sore throat, condition Nausea, damage to plants (growth disorders and the effect on germination) and reduced tire life, hence, it is necessary to know and study the tropospheric ozone in large and industrial cities. Tropospheric ozone is a pollutant because it plays an effective role in converting primary pollutants into secondary pollutants. Therefore, the aim of this study was to investigate the trend of changes in tropospheric ozone concentration with meteorological parameters, ozone precursors (nitrogen dioxide and nitrogen oxides). In this study, data from Kermanshah synoptic station and air quality station of Kermanshah General Department of Environmental Protection (Ziba Park station) in a long-term period of 10 years (2007-2016) have been used. Also, in this study using sensor images The OMI satellite Aura was surveyed in February and July 2016. Tropospheric ozone is known as a pollutant in Kermanshah. Therefore, no systematic studies have been conducted on the recognition of tropospheric ozone and the relationship between tropospheric ozone and meteorological parameters in Kermanshah over a long period of time. Tropospheric ozone and its relationship with changes in nitrogen oxides, nitrogen dioxide and synoptic parameters in Kermanshah were studied and the correlation between tropospheric ozone concentration and meteorological parameters was studied by Pearson test and the relationship between them was studied by linear regression. Based on the results. The maximum concentration of ozone occurs in the afternoon between 14:00 and 17:00 and the maximum amounts of nitrogen oxides occur at night and in the early morning of the year. Also, the study of seasonal changes in ozone concentration showed that in warm seasons due to the conditions of tropospheric ozone formation, including the intensity of sunlight, temperature and time of radiation and the presence of pollutants including nitrogen oxides, the concentration of tropospheric ozone was much higher. Ozone concentrations are highest in June, July, August, and spring and summer. The results also showed that there is a direct relationship between solar radiation and ozone concentration. Simultaneously with increasing solar radiation, it increases the air temperature, which increases the photochemical activity and thus increases the ozone concentration. This can be seen in the warm months of the year (June, July and August). Wind speed is also directly related to the concentration of tropospheric ozone. As the wind speed increases, the reactants mix faster and the tropospheric ozone concentration increases. However, precipitation is inversely related to the concentration of tropospheric ozone, which decreases with the occurrence of precipitation in the months associated with the onset of precipitation, and in the dry months of the year, the concentration is increasing. Therefore, meteorological factors and parameters play an important role in tropospheric ozone changes. Which can be seen by linear regression and Pearson test. The results of the study of nitrogen dioxide and nitrogen oxides showed that the highest concentration of nitrogen dioxide and nitrogen oxides during the day is the opposite of the concentration of tropospheric ozone and the lowest concentration of ozone occurs in summer due to increased solar radiation, increased oxidation of di Nitric oxide and nitrogen oxides, and as a result increase the concentration of tropospheric ozone, in autumn and winter, this amount has an increasing trend. Therefore, the trend of changes in tropospheric ozone concentration is the opposite of the concentration of nitrogen dioxide and nitrogen oxides, which can be seen in the daily, monthly and seasonal sections, which linear regression and Pearson test show this important and OMI sensor images confirm this fact. In conclusion of this study, all parameters related to the concentration of pollutants along with meteorological parameters have been effective factors in the concentration of tropospheric ozone. Keywords: air pollution, meteorological parameters, ozone tropospheric, NO2, NOX  

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved tropospheric ozone profile retrievals using OMI and TES radiances

[1] We perform a study for characterizing the vertical resolution of tropospheric ozone profile retrievals from the combination of simulated ultraviolet (UV) and thermal infrared (TIR) observations that are representative of the EOS Aura Ozone Monitoring Instrument (OMI) and the Tropospheric Emission Spectrometer (TES). Under the low thermal contrast conditions used for this simulation, we find...

متن کامل

Statistical Analysis of Tropospheric Ozone Concentration

This paper analyzes ozone monitoring data obtained from 50 European stations operated by the Co-operative Programme for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe (EMEP) and two stations maintained by the Austrian Environmental Agency. Data used in the analyses covered the summer period of the year 1990. The analysis explores first time series of ozone ...

متن کامل

Global Ozone–CO Correlations from OMI and AIRS: Constraints on Tropospheric Ozone Sources

We present a global data set of free tropospheric ozone–CO correlations with 2× 2.5 spatial resolution from the Ozone Monitoring Instrument (OMI) and Atmospheric Infrared Sounder (AIRS) satellite instruments for each season of 2008. OMI and AIRS have near-daily global coverage of ozone and CO respectively and observe coincident scenes with similar vertical sensitivities. The resulting ozone–CO ...

متن کامل

Global Ozone - CO Correlations from OMI and AIRS : Constraints on Tropospheric 1 Ozone

32 33 We present a global data set of free tropospheric ozone-CO correlations with 2 o × 2.5 o 34 spatial resolution from the OMI and AIRS satellite instruments for each season of 2008. 35 OMI (ozone) and AIRS (CO) have near daily global coverage and observe coincident 36 scenes with similar vertical sensitivities. The resulting ozone-CO correlations are highly 37 statistically significant (pos...

متن کامل

Role of meteorological variability in global tropospheric ozone during 19702008

[1] Interannual variation in global tropospheric ozone associated with meteorological variability is characterized in this study using a global chemical transport model CHASER. We focus on five meteorological variability: El Niño Southern Oscillation (ENSO), Indian Ocean Dipole (IOD), Arctic Oscillation (AO), Hadley, and monsoon circulations. Results show that the anomaly in tropospheric column...

متن کامل

Tropospheric ozone column retrieval from OMI data by means of neural networks: a validation exercise with ozone soundings over Europe

The retrieval of the tropospheric ozone column from satellite data is very important for the characterization of tropospheric chemical and physical properties. However, the task of retrieving tropospheric ozone from space has to face with one fundamental difficulty: the contribution of the tropospheric ozone to the measured radiances is overwhelmed by a much stronger stratospheric signal, which...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 8  شماره 4

صفحات  1- 16

تاریخ انتشار 2022-03

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023